

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

HIGH PERFORMANCE COMPUTING MULTICAST

CORNELL UNIVERSITY

FEBRUARY 2012

FINALTECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2012-070

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-070 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
GEORGE RAMSEYER PAUL ANTONIK, Technical Advisor
Work Unit Manager Computing & Communications Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEB 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

JUN 2010 – SEP 2011
4. TITLE AND SUBTITLE

HIGH PERFORMANCE COMPUTING MULTICAST

5a. CONTRACT NUMBER
FA8750-10-1-0181

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Kenneth Birman
Daniel Freedman
Robert van Renesse
Hakim Weatherspoon
Tudor Marian

5d. PROJECT NUMBER
T2DP

5e. TASK NUMBER
CO

5f. WORK UNIT NUMBER
RN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
Upson Hall, Room 4119B
341 Pine Tree Road
Ithaca, NY 14850

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-070

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-0835
Date Cleared: 15 FEB 2012
13. SUPPLEMENTARY NOTES

14. ABSTRACT This investigation of High Performance Computing (HPC) Multicast for High-Speed Publication-Subscription (Pub-Sub) sought
to deliver both insight into and implementation of high-performance multicast solutions that enable better utilization of cloud resources. These
solutions combine improved scalability with increased consistency — ensuring that expected and necessary system conditions are thus met for a
myriad of critical national-asset applications that are likely to move to the cloud in the next decade. In the context of this effort, the applicability of
the oft-invoked Consistency, Availability and Partition tolerance (CAP) theorem was explored within specific environments of commonly deployed
clouds, and novel insights into CAP’s tradeoffs were developed between CAP and its conclusion that a replicated service can possess just two of the
three. It was determined that there are replicated services for which the applicability of CAP is unclear — specifically, the scalable “soft-state”
services that run in the first-tier of a single cloud-computing data center. The challenge is that such services live in a single data center and run on
redundant networks. Partitioning events involve single machines or small groups, and are treated as node failures; thus, the CAP proof doesn’t
apply in a formal sense, as it’s proven by forcing a replicated service to respond to conflicting requests during a partitioning failure, triggering
inconsistency. Nonetheless, most developers believe in a generalized CAP “folk theorem,” holding that scalability and elasticity are incompatible
with strong forms of consistency. We designed, implemented, and benchmarked the Isis2 platform: a first-tier consistency alternative that
replicates data, combines agreement on update ordering with amnesia freedom, and supports both good scalability and fast response. A team of
students was lead in the application of Isis2 to build a large-scale distributed computer-vision landmark-recognition system, thus demonstrating the
practicality of Isis2 from a software-engineering perspective. Isis2 is publically available, without patent or other intellectual-property
encumbrances, via a 3-clause Berkeley Software Distribution (BSD) license.
15. SUBJECT TERMS

High Performance Computing, multicast, CAP Theorem, Isis, Publication-Subscription

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

33

19a. NAME OF RESPONSIBLE PERSON
GEORGE RAMSEYER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

List of Figures ... ii

1. SUMMARY... 1

2. INTRODUCTION ... 2

2.1 Serious Obstacles in Existing Solutions ... 3

2.2 Prior Work .. 3

2.3 Application to Military Needs .. 5

3. METHODS, ASSUMPTIONS AND PROCEDURES ... 7

4. RESULTS AND DISCUSSION .. 9

4.1 Life in the First-Tier ... 10

4.2 Consistency: A Multi-Dimensional Property ... 11

4.2.1 Membership. ... 11

4.2.2 Update Ordering.. 12

4.2.3 Durability. ... 13

4.2.4 Failure Model. ... 14

4.2.5 Putting It All Together. ... 14

4.3 The Isis2 System ... 15

4.4 Related Work.. 21

5. CONCLUSIONS ... 22

6. REFFERENCES .. 23

BIBLIOGRAPHY ... 26

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 28

ii

LIST OF FIGURES

Figure 1. Part of Cornell University’s Computing Resources ... 2
Figure 2. High Speed Networks ... 2
Figure 3. DoD Command and Control……………………………………………………………6
Figure 4. Send, together with a Flush barrier... 16
Figure 5. SafeSend (in-memory) Paxos. .. 17
Figure 6. Durable (disk-logged) Paxos. ... 17
Figure 7. Mean delivery latency per single invocations. ... 19
Figure 8. Histogram of delivery jitter. ... 20
Figure 9. Cumulative Distribution Function (CDF) of delays. .. 20

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1. SUMMARY

This investigation of High Performance Computing (HPC) Multicast for High-Speed
Publication-Subscription (Pub-Sub) sought to deliver both insight into and implementation of
high-performance multicast solutions that enable better utilization of cloud resources. Our
solutions combine improved scalability with increased consistency — ensuring that expected and
necessary system conditions are thus met for a myriad of critical national-asset applications that
are likely to move to the cloud in the next decade. In the context of this effort, the applicability
of the oft-invoked Consistency, Availability and Partition tolerance (CAP) theorem was explored
within specific environments of commonly deployed clouds, and novel insights into CAP’s
tradeoffs were developed between CAP and its conclusion that a replicated service can possess
just two of the three. We discovered that there are replicated services for which the applicability
of CAP is unclear, including the scalable “soft-state” services that run in the first-tier of a single
cloud-computing data center. The puzzle is that such services live in a single data center and run
on redundant networks. Partitioning events involve single machines or small groups and are
treated as node failures; thus, the CAP proof doesn’t apply in a formal sense, as it’s proven by
forcing a replicated service to respond to conflicting requests during a partitioning failure,
triggering inconsistency. Nonetheless, most developers believe in a generalized CAP “folk
theorem,” holding that scalability and elasticity are incompatible with strong forms of
consistency. We designed, implemented, and benchmarked the Isis2 platform: a first-tier
consistency alternative that replicates data, combines agreement on update ordering with amnesia
freedom, and supports both good scalability and fast response. We have led a team of students in
the application of Isis2 to build a large-scale distributed computer-vision landmark-recognition
system, thus demonstrating the practicality of Isis2 from a software-engineering perspective. Isis2
is publically available, without patent or other intellectual-property encumbrances, via a 3-clause
Berkeley Software Distribution (BSD) license.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

2. INTRODUCTION

Figure 1. Part of Cornell University’s Computing Resources

The United States needs a new generation of cheaper high-performance computing systems
even as technology trends are shifting towards inexpensive raw computing power: some of the
world’s fastest processors are now commodities used in gaming, multicore is becoming common,
and advances in core Internet routing have helped optical switching leap into the 100Gbps range,
with 1Tbps within sight. Thus the opportunity now exists to create HPC platforms that will cost
a fraction of what previous generations of machines cost, and yet may actually outperform most
existing solutions. In Fig. 1 is presented a portion of Cornell University’s research facility,
which focuses, in part, on research for high speed networks. In particular, the networks shown in
Figure 2 have been well characterized.

Figure 2. High Speed Networks

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

2.1 Serious Obstacles in Existing Solutions

While existing trends reveal a possible path forward, they also confront us with serious
obstacles. HPC programming solutions can only scale to a limited degree on cluster-style
computing elements. A core issue here is that technologies such as Parallel Virtual Machines
(PVM) and Message-Passing Interface (MPI) aren’t fault-tolerant, and this limitation was “baked
in” so long ago that it simply can’t easily be changed. Fault-tolerance is achieved by engaging in
constant checkpoints (at significant cost), and because cluster-style computing systems typically
experience crashes roughly in proportion to the number of nodes, the frequency of checkpoints
needs to increase at that same rate. The amount of information being backed up will also rise as
a function of the number of nodes. Thus we have (more or less) a quadratic scalability wall:
beyond a certain size, HPC applications will need to be fragmented into multiple but loosely
coupled applications, each small enough to make significant progress between checkpoints, and
each working on a distinct aspect of the overall application.

 Our vision of HPC applications as a collection of highly parallel components that exchange
results in a loosely coupled manner encounters a different issue: HPC platform lack adequately
fast tools for replicating data and exchanging “events” under demanding conditions. For
example, the standard Enterprise Service Bus (ESB) model has frustratingly poor scalability
properties.

 Our research at Cornell reveals that a core problem with ESB performance is that for many
reasons these systems are unable to take advantage of hardware IP multicast. Two important
ones are these: First, modern HPC switching and routing components collapse if too many
Internet Protocol (IP) multicast groups are in use; they start to deliver all messages to all network
interface adapters, and those then become overloaded and drop packets. Further, multicast
platforms can become unstable when using hardware multicast mechanisms, behaving in a bursty
(oscillatory) manner. Jointly, these issues can cripple the ESB publish-subscribe technology.

2.2 Prior Work

In prior work, with Air Force research support (augmented by Intel and National Science
Foundation (NSF) funding), our Cornell-based effort looked closely at some of these issues and
found that the problems are explicable and, with appropriate software, can be brought under
control. For example, in our paper at the 2010 ACM EuroSys conference [1], we showed that by
appropriately “managing” the set of IP multicast addresses, one can avoid overloading the cluster
router, eliminating the issue described above. Other work on our Quicksilver Scalable Multicast
(award paper) [2] demonstrated that a collection of careful protocol design techniques can
eliminate the bursty multicast instability.

As discussed above, this effort builds atop our earlier successes in a series of previous
projects here at Cornell. Our work on methodical measurement of Wide-Area Networks
(WANs) [3] prepared us to now examine data-center based Local-Area Networks (LANs) and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

work to improve the HPC multicast implementations therein. Specifically, in prior work [4] we
introduced a new methodology called BiFocals, with application to many aspects of protocol
design and evaluation. This instrumentation has two components: one to send engineered
bitstreams in which we precisely control the bits on the Physical Layer, and a second that can
achieve similar precision in extracting timing and other statistics on the receive side. We
employed BiFocals to perform the most accurate measurements of a WAN ever undertaken. Our
findings refuted several common assumptions about network behavior.

The motivation for our BiFocals measurements stemmed from yet earlier work [5] that
examined WAN’s using typical software techniques and commodity endpoints. In that study, we
undertook a careful examination of the end-to-end characteristics of an uncongested lambda
network running at high speeds over long distances, identifying scenarios associated with loss,
latency variations, and degraded throughput at attached end-hosts. We used identical fast
commodity source and destination platforms, hence expect the destination to receive more or less
what we send. We observed otherwise: degraded performance is common and easily provoked.
In particular, the receiver loses packets even when the sender employs relatively low data rates.
Data rates of future optical network components are projected to outpace clock speeds of
commodity end-host processors, hence more and more end-to-end applications will confront the
same issue we encounter. Our work thus posed a new challenge for those hoping to achieve
dependable performance in higher-end networked settings.

Further, our past success with Dr. Multicast [1] provided the underlying IPMC solutions atop
which we build the new Isis2 platform, which we then demonstrated for HPC MC in the AFRL’s
Condor cluster. In our Dr. Multicast paper, we noted that IP Multicast (IPMC) in data centers
becomes disruptive when the technology is used by a large number of groups, a capability
desired by event notification systems. We traced the problem to root causes, and introduce Dr.
Multicast (MCMD), a system that eliminates the issue by mapping IPMC operations to a
combination of point-to-point unicast and traditional IPMC transmissions guaranteed to be safe.
MCMD optimizes the use of IPMC addresses within a data center by merging similar multicast
groups in a principled fashion, while simultaneously respecting hardware limits expressed
through administrator-controlled policies. The system is fully transparent, making it backward-
compatible with commodity hardware and software found in modern data centers. Experimental
evaluation showed that MCMD allows a large number of IPMC groups to be used without
disruption, restoring a powerful group communication primitive to its traditional role.

Finally, we’ve shown in prior work [2], recognized with a conference best paper award, that
a careful and principled design of a multicast protocol can distinctly improve performance, as we
hope to again try to do so with HPC multicast. QuickSilver Multicast (QSM) is a multicast
engine designed to support a style of distributed programming in which application objects are
replicated among clients and updated via multicast. The model requires platforms that scale in
dimensions previously unexplored; in particular, to large numbers of multicast groups. Prior
systems weren’t optimized for such scenarios and can’t take advantage of regular group overlap

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

patterns, a key feature of our application domain. Furthermore, little is known about performance
and scalability of such systems in modern managed environments. We shed light on these issues
and offer architectural insights based on our experience building QSM.

2.3 Application to Military Needs
One might reasonably inquire into the connection between the results we provide in this

effort and the larger needs of the military and its warfighters. The scalability and consistency
deliverables of our Isis2 platform, along with an accompanying understanding of the scenarios to
which it is applicable, serve as key contributions of this effort. As we discuss below, we tailor
Isis2 to the soft-state first-tier of the cloud, thus providing application architects with the ability
to deliver scalable, consistent interactions with remote clients. Now, many existing applications
that utilize the cloud infrastructure to focus on consumer, or even business, needs do not require
higher levels of consistency, or, if they do, they can willingly trade performance to meet such
requirements.

However, as Department of Defense (DoD) information-system infrastructure transitions to
the cloud, it will continue to interface with forward-deployed Command and Control (C2)
clients. Operating in a fluid real-time environment, these clients will be unwilling to sacrifice
performance, and yet will clearly require levels of consistency beyond that often provided in the
first tier of a cloud computing environment. The type of eventual consistency that has become
the coin of the realm for the Amazons and the eBays of the world is much less compelling when
the problem space involves tactical situation awareness, or deconfliction of units or airspace, or a
variety of other critical military operational uses, such as those motivated by Figure 3.

It is therefore within this context, and ones similar to it, that the strength of our agenda here is
best recognized. We have succeeded in delivering scalable consistent solutions that tackle
portions of the design space that have largely been overlooked by the wider research community.

Further, this agenda builds naturally from our previous AFRL-sponsored effort which created the
Live Objects middleware and delivered composable mashups to combine edge content with
hosted content. That earlier effort considered the technical provisioning of such hosted content
to be outside its scope. Now, in this AFRL-funded work, we tackle just such a problem and find
a host of intriguing perspectives.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

C2 clients (left) interfacing with central DoD Command Center (right) motivated our effort. Edge clients in such an
environment require higher levels of performance, as well as stronger guarantees of consistency, than those typically provided
now by cloud infrastructures.

Figure 3. DoD Command and Control

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

3. METHODS, ASSUMPTIONS AND PROCEDURES

The current effort focused on an attack on ESB scalability. In particular, there were four
core research objectives, all of which were accomplished over the course of the one-year
research program.

 We are convinced that the key to successfully exploiting hardware multicast in HPC systems
is to start by fully characterizing the behavior of hardware multicast in the target setting. While
this may seem like a trivial observation, measurement is notoriously hard on modern computer
systems: the optical fiber is first handled by hardware in the network interface card, then copied
to memory associated with one of the multicore CPUs in the power PC itself, and then the driver,
Operating System (O/S) and ESB (pub-sub application) all need to take actions before a
multicast actually reaches the end-user’s code. Loss can and does occur at every step and
measurement is particularly difficult when the measurement code runs on the same platform that
experiences the loss. We’ve completed development of a new instrumentation technology to this
end, and in using it, we have achieved a dramatic improvement in the quality of our analysis of
where loss occurs on this complex path, and precisely what conditions can trigger it. We
combined this with an examination of the larger system-wide contributions to these conditions,
and have leveraged this to a greater understanding of the design lessons that will continue to
inform the architecture of network-attached endpoints and the intermediary switches and routers.

 We designed and implemented a large-scale platform, which we call Isis2, to allow increased
scalability, availability, and performance on cloud resources. Isis2 supports consistent, locally
responsive cloud services. Responses to client requests can be computed using purely local data,
hence delays are limited only by local computational costs. Updates propagate asynchronously
and map to a single IP multicast; locking is usually avoided by employing primary-copy
replication, and otherwise is performed with an inexpensive token-passing scheme. The
approach relaxes durability for soft-state updates: in analog to the database community, this
yields an “ACI and mostly D” model. Durability violations are concealed using a form of
firewall.

 We exhaustively benchmarked and tuned the Isis2 system on the AFRL’s production Condor
cluster, investigating its ability to scale using physical IPMC, and the benefits derived from
Isis2’s foundation upon our earlier Dr. Multicast work [1]. We explored the tradeoffs between
different protocol designs and gained insights into the applicability of such protocols in different
layers of the typical cloud and for different application architecture needs [6].

 We explored the applicability of the oft-invoked Consistency, Availability and Partition
tolerance (CAP) theorem to the very specific environmental details of commonly deployed
clouds, and discovered important, and somewhat heretical, insights. CAP explores tradeoffs
between its three constituents, and the theorem concludes that a replicated service can possess
just two of the three. The theorem is proved by forcing a replicated service to respond to

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

conflicting requests during a partitioning failure, triggering inconsistency. However, there are
replicated services for which the applicability of CAP is unclear. As part of our effort, we
looked at scalable “soft-state” services that run in the first-tier of a single cloud-computing data
center. The puzzle is that such services live in a single data center and run on redundant
networks. Partitioning events involve single machines or small groups and are treated as node
failures; thus, the CAP proof doesn’t apply. Nonetheless, developers believe in a generalized
CAP “folk theorem,” holding that scalability and elasticity are incompatible with strong forms of
consistency. We present a first-tier consistency alternative that replicates data, combines
agreement on update ordering with amnesia freedom, and supports both good scalability and fast
response.

 While involving a large team of Masters students, we designed and built a sophisticated
application atop Isis2. This served as a critical proof-of-concept that the Isis2 platform not only
provides performance and consistency benefits in the abstract as a middleware solution, but can
also be efficiently utilized, in terms of practical software engineering, by a team of junior
programmers without much prior experience in distributed systems development, and with no
exposure to the platform. Over a period of ten weeks, our team of four students transformed an
existing computer vision research application, designed strictly for sequential uniprocessor
execution, into a scalable, distributed application running atop Isis2 on a cluster of nodes in a
cloud.

As part of this effort, we have released the Isis2 platform to the public under a (3-clause)
BSD license with no patent or other restrictions. Our publications document the hard problems
we solved, and they represent a roadmap that others could follow to create similar platforms that
obtain greater consistency and performance on the critical first tier of the cloud.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

4. RESULTS AND DISCUSSION
The CAP theorem [7][8] has been influential within the cloud computing community, and

motivates the creation of cloud services with weak consistency properties. While the theorem
focuses on services that span partition-prone network links, CAP is also cited in connection with
Basically Available replicated Soft state with Eventual consistency (BASE), a methodology in
which services that run in a single data center on a reliable network are engineered to use a non-
transactional coding style, tolerate potentially stale or incorrect data, and eschew
synchronization. eBay invented the approach [9], and Amazon points to the self-repair
mechanisms in the Dynamo key-value store as an example of how eventual consistency behaves
in practice [10].

The “first-tier” of the cloud, where this issue is prominent, is in many ways an unusual
environment. When an incoming client’s request is received, fast response is the overwhelming
priority, even to the extent that other properties might need to be weakened. Cloud systems host
all sorts of subsystems with strong consistency guarantees, including databases and scalable
global file systems, but they reside “deeper” in the cloud, shielded from the heaviest loads by the
first-tier.

To promote faster responsiveness, first-tier applications often implement replicated in-
memory key-value stores, using them to store state or to cache data from services deeper in the
cloud. When this data is accessed while processing a client request, locking is avoided, as are
requests to inner services, for example to check that cached data isn’t stale. To the extent that
requests have side-effects that require updates to the cloud state, these are handled in a staged
manner: the service member performs the update locally and responds to the client. Meanwhile,
in the background (asynchronously), updates are propagated to other replicas and, if needed, to
inner-tier services that hold definitive state. Any errors are detected and cleaned up later,
hopefully in ways external clients won’t notice: eventual consistency.

This works well for eBay, Facebook and other major cloud providers today. But will it work
for tomorrow’s cloud applications? For example, as applications such as medical records
management (including “active” medical applications that provide outpatient monitoring and
control), transportation systems (smart highways), control of the emerging smart power grid, and
similar tasks shift to the cloud, we’ll confront a wave of first-tier applications that may be
required to justify their actions. Is a scalable solution to this problem feasible?

Our approach mimics many aspects of today’s BASE solutions, but offers first-tier service
replicas a way to maintain consistent replicated data, across the copies. Locks are not required:
any service instance sees a consistent snapshot of the first-tier state, using locks only if a mutual
exclusion property is required. To maximize performance, updates are performed optimistically
and asynchronously, but to avoid the risk that updates might be lost in a later crash, we introduce

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

a flush barrier: before replying to an external client (even for a read-only operation), the primary
checks to make sure that any unstable updates on which the request depends have reached all the
relevant replicas. Jointly, these techniques yield a strong consistency guarantee and amnesia
freedom: in-memory durability. We believe this is a good match to the performance, scalability
and responsiveness needs of first-tier cloud services.

This effort doesn’t have the scope to consider other alternatives, such as full-fledged
transactions. Nonetheless, our experimental work supports the view that full-fledged atomic
multicast wouldn’t scale well enough for use in this setting (i.e. durable versions of Paxos1, or
Atomicity, Consistency, Isolation and Durability (ACID) transactions). As we’ll show, strongly
durable multicast exhibits marked performance degradation in larger-scale settings. In contrast,
amnesia freedom scales well, overcoming the limitations of CAP.

4.1 Life in the First-Tier

Cloud-computing systems are generally structured into tiers: a first-tier that handles
incoming client requests (from browsers, applications using web-services standards, etc), caches
and key-value stores that run near the first-tier, and inner-tier services that provide database and
file-system functionality. A wide variety of back-end applications run off the critical path,
preparing indices and other data for later use by online services.

In the introduction some aspects of the first-tier programming model were discussed:
aggressive replication, very loose coupling between replicas, optimistic local computation
without locking, and asynchronous updates. Modern cloud-development platforms standardize
this model, and in fact take it even further. In support of elasticity, first-tier applications are also
required to be stateless: cloud platforms launch each new instance in a standard initial state, and
they discard local data when an instance fails or is halted. These terms require some explanation.
“Stateless” doesn’t mean that these instances have no local data but rather that they are limited to
non-durable soft state. On launch, a new instance initializes itself by copying data from some
operational instance, or by querying services residing deeper in the cloud. Further, “elasticity”
doesn’t mean that a service might be completely shut down without warning: cloud-management
platforms can keep some minimum number of replicas of each service running (ensuring
continuous availability). Subject to these constraints, however, replication degree can vary
rapidly.

These observations enable a form of durability. Data replicated within the soft state of a
service, in members that the management platform won’t shut down (because they reside within
the core replica set), will remain available unless a serious failure causes all the replicas to crash
simultaneously. Failures of that kind will be rare in a well-designed application; we’ll leverage
this observation below.

1 Paxos is a family of protocols for solving consensus in a network of unreliable processors. Consensus is the process of agreeing

on one result among a group of participants. This problem becomes difficult when the participants or their communication
medium may experience failures

http://en.wikipedia.org/wiki/Consensus_(computer_science)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

This, then, is the context within which CAP is often cited as a generalized principle. In
support of extremely rapid first-tier responses and fault-tolerance, developers have opted for
relaxed consistency. This effort will shows that one can achieve similar responsiveness while
delivering stronger consistency guarantees by adopting a consistency model better matched to
the characteristics of the first-tier. The approach could enable cloud-hosting of applications that
need strong justification for any responses they provide to users. Consistency can also enhance
security: a security system that bases authorization decisions on potentially stale or incorrect
underlying data is at risk of mistakes that a system using consistent data won’t make.

4.2 Consistency: A Multi-Dimensional Property
Terms like consistency can be defined in many ways. In prior work on CAP, the “C” is

defined by citing the database ACID model; the “C” in CAP is defined to be the “C” and “D”
from ACID. Consistency, in effect, is conflated with durability. Underscoring this point, several
CAP and BASE papers also point to Paxos [11], an atomic multicast protocol that provides total
ordering and durability.

Durability is the guarantee that if an update has been performed, it will never be lost.
Normally, the property is expected to apply even if an entire service crashes and then restarts.
But notice that for a first-tier service, durability in this strongest sense conflicts with the soft-
state limitation. By focusing on techniques that guarantee durability and are often used in hard-
state settings, one risks reaching conclusions that relate to features not needed by first-tier
services. With this in mind let’s review other common but debatable assumptions:

4.2.1 Membership.

Any replication scheme needs a membership model. Consider some piece of replicated data
in a first-tier service: the data might be replicated across the full set of first-tier application
instances, or it might live just within some small subset of them (in the latter case the term shard
is often used). Which nodes are supposed to participate?

For the case in which every replica has a copy of the data item, the answer is evident: all the
replicas currently running. But notice that because cloud platforms vary this set elastically, the
actual collection will change over time, perhaps rapidly. Full replication forces us to track the
set, to have a policy for initializing a newly launched service instance, and to ensure that each
update reaches all the replicas, even if that set is large.

For shard data any given item will be replicated at just a few members, hence a mapping
from key (item-id) to shard is needed. Since each service instance belongs to just a few shards
but potentially needs access to all of them, a mechanism is also needed whereby any instance can
issue read or update requests to any shard. Moreover, since shard membership can change, we’ll
need to factor membership dynamics into the model.

One way to handle such issues is seen in Amazon’s Dynamo key-value store [12], which is a
form of Distributed Hash Table (DHT). Each node in Dynamo is mapped (using a hashing

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

function) to a location on a virtual ring, and the key associated with each item is similarly
mapped to the ring. The closest node with a mapped id less than or equal to that of the item is
designated as its primary owner, and the value is replicated to the primary and to the next few
(typically three) nodes along the ring: the shard for that key. Shard mappings change as nodes
join and leave the ring, and data is moved around accordingly (a form of state transfer).
Coordination with the cloud-management service minimizes abrupt elasticity decisions that
would shut down shards without first letting members transfer state to new owners.

A second way to implement shards arises in systems that work with process groups [14]:
here, the various requirements are solved by a group communication infrastructure (such as new
Isis2 system). Systems of this sort offer an Application Programming Interface (API) with basic
functionality: ways for processes to create, join, and leave groups; group names that might
encode a key (such as “shard123”), a state-transfer mechanism to initialize a joining member
from the state of members already active, and built-in synchronization (Isis2, for example,
implements the virtual synchrony model [14]). The developer decides how shards should work,
then uses the provided API to implement the desired policy. With group communication
systems, group membership change is a potentially costly event, but a single membership update
can potentially cover many changes. Accordingly, use of this approach presumes some
coordination with the cloud management infrastructure so that changes are done in batches.
Assuming that the service isn’t buggy, the remaining rate of failures should be very low.

A third shard-implementation option is seen in services that run on a stable set of nodes for a
long period, enabling a kind of static membership in which some set of nodes is designated as
running the service. Here, membership remains fixed, but some nodes may be down when a
request is issued. This forces the use of quorum replication schemes, in which only a quorum of
replicas see each update, but reading data requires accessing multiple replicas. State transfer
isn’t needed unless the static membership is reconfigured.

Several CAP papers express concern about the high cost of quorum operations, especially if
they occur on the critical path for end-user request processing. Notice that quorum operations
are needed only in the static membership case (not for DHT or process group approaches).
Those avoid the need for quorums because they evolve shard membership as nodes join, leave or
fail. This avoids a kind of non-local interaction that can be as costly as locking: if every read or
update operation on the critical path entails interaction with multiple nodes, the reply to the end-
user could be delayed by a substantial number of multi-node protocol events (because many
requests will perform multiple reads and updates). With dynamic membership, we gain the
ability to do reads and writes locally at the price of more frequent group membership updates.

4.2.2 Update Ordering.

A second dimension of consistency concerns the policy whereby updates are applied to
replicas. A consistent replication scheme is one that applies the same updates to every replica in

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

the same order, and that specifies the correct way to initialize new members, or nodes recovering
from a failure [13][14][6].

Update ordering costs depend on the pattern whereby updates are issued. In many systems,
each data item has a primary copy through which updates are routed. Some systems shift the
role of being primary around, but the basic idea is the same: in both cases, by delivering updates
in the order they occur at the primary, without gaps, the system can be kept consistent across
multiple replicas. The required multicast ordering mechanism is simple and very inexpensive.

A more costly multicast-ordering need arises if every replica can initiate concurrent,
conflicting updates to the same data items. When concurrent updates are permitted, the multicast
mechanism must select an agreed-upon order, at which point the delivery order can be used to
apply the updates in a consistent order at each of the replicas. This is relevant only because the
CAP and BASE point to protocols that do permit concurrent updates. Thus by requiring
replicated data to have a primary copy, we can achieve a significant cost reduction.

4.2.3 Durability.

The third dimension involves durability of updates. Obviously, an update that has been
performed is durable if the service doesn’t forget it. But precisely what does it mean to have
“performed” an update? And must the durability mechanism retain data across complete
shutdowns of the full membership of a service or shard?

In applications where the goal is to replicate a database or file (some form of external
storage), durability involves mechanisms such as write-ahead logs: all the replicas would push
updates to their respective logs, then acknowledge that they are ready to commit the update, and
then in a second phase, the updates in the logs can be applied to the actual database. Lamport’s
Paxos protocol [15][11] doesn’t talk about the application per-se, but most implementations of
Paxos incorporate this sort of logging of pending updates. This can be called strong durability,
and it presumes a durable storage that will survive failures.

Recall that first-tier services are required to be stateless. Can a first-tier service replicate data
in a way that offers a meaningful durability property? The obvious possibility is in-memory
update replication: we could distinguish between a service that might respond to a client before
every replica knows of the updates triggered by that client’s request, and a service that delays
until after every replica has acknowledged the relevant updates. If we call the former solution
non-durable (if the service has n members, even a single failure can leave n-1 replicas in a state
where they will never see the update), what should we call this other solution? This will be the
case we’re referring to as amnesia freedom: the service won’t forget the update unless all n
members fail (as noted earlier, that will be rare). Notice that with amnesia freedom, any
subsequent requests issued by the client, after seeing a response to a first request, will be handled
by service instances “aware” of the updates triggered by that first request.

Amnesia freedom isn’t perfect. If a serious failure does force an entire service or shard to
shut down, unless the associated data is backed up on some inner-tier service, state will be lost.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

But, if such events are rare, the risk may be acceptable. For example, suppose that applications
for monitoring and controlling embedded systems such as medical monitoring devices move to
cloud-hosted settings. While these roles do require consistency and other assurance properties,
the role of monitoring is a continuous online one. Moreover, applications of this sort generally
revert to a fail-safe mode when active control is lost. Here, one might not need any inner-tier
service at all.

Applications that push updates to an inner service have a choice: they can wait for the update
to be acknowledged, or could adopt amnesia freedom, but in so doing, accept a window of
vulnerability for the period between when the update is fully replicated in the memory of the
first-tier service, until it reaches the inner-tier. Another database analogy comes to mind:
database mirroring is often done by asynchronously streaming a log, despite the small risk that a
failure could cause updates to be lost. An amnesia-free approach has an analogously small risk:
having replicated an update in the memory of a first-tier service, the odds of it being lost will be
orders of magnitude smaller than in today’s BASE approaches.

4.2.4 Failure Model.

This effort assumes that applications fail by crashing, and that network packets can be lost,
and that partitioning failures that isolate a node, or even a rack or container are mapped to crash
failures: when the network is repaired, the nodes that had been isolated will be forced to restart.
We also assume that while isolated by a network outage, nodes are unable to communicate with
external clients.

4.2.5 Putting It All Together.

We arrive at a rather complex set of choices and options, from which one can construct a
diversity of replication solutions with very different properties, required structure, and expected
performance. Some make little sense in the first-tier; others represent reasonable options:

One can build protocols that replicate data optimistically and later heal any problems that
arise, perhaps using gossip (BASE). Updates are applied in the first-tier, but then passed to
inner-tier services which might apply them in different orders.

One can build protocols synchronized with respect to membership changes, and with a
variety of ordering and durability properties (virtual synchrony and also “in-memory” versions of
Paxos, where the Paxos durability guarantee applies only to in-memory data). Amnesia freedom
is achieved by enforcing a “barrier”: prior to sending a reply to the client request, the system
pauses, delaying the response until any updates initiated by the request (or seen by the request
through its reads) have reached all the replicas and thus become stable. If all updates are already
stable, no delay is incurred.

One can implement a strongly-durable state-machine replication model. Most
implementations of Paxos use this model. In our target scenario, of course, the strongest forms

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

of durability just aren’t meaningful: there is no benefit to logging messages other than in the
memory of the replicas themselves.

One can implement database transactions in the first-tier, coupling them to the serialization
order used by inner-tiers, for example via a true multi-copy model based on the ACID model or a
snapshot-isolation model. This approach is receiving quite a bit of attention in the research
community.

How does CAP deal with this diversity of options? The question is easier to pose than to
answer. Brewer’s 2000 Principles of Distributed Computing (PODC) keynote [7] proposed CAP
as a general principle. His references to consistency evoke ACID database properties. Gilbert
and Lynch offered their proof [8] in settings with partitionable wide-area links, and in fact
pointed out that with even slight changes, CAP ceases to apply (for example, they propose a
model called t-eventual consistency that avoids the CAP tradeoff). In their work on BASE,
Pritchett [9] and Vogels [10] point both to the ACID model and to the durable form of Paxos
[15][11]. They argue that these models will be too slow for the first-tier; their concerns
apparently stem from the costly two-phase structure of these particular protocols, and from their
use of quorum reads and updates, resulting in delays on the critical path that computes responses.

Notice that the performance and scalability concerns in question stem from durability
mechanisms, not those supporting order-based consistency. As we saw earlier, sharded data
predominates in the first-tier, and one can easily designate a primary copy at which updates are
performed first. Other replicas mirror the primary. Thus the “cost of consistency” can be
reduced to the trivial requirement that updates be performed in the same FIFO order used by the
primary.

We recommend that first-tier services employ a shared model, with a primary replica for
each data item, and we favor a process-group model that coordinates group membership changes
with updates: virtual synchrony [14]. When a first-tier service instance receives a request, it
executes it using local data, and applies any updates locally as well, issuing a stream of
asynchronous updates that will be delivered and applied in First In, First Out (FIFO) order by
other replicas. This permits a rapid but optimistic computation of the response to the user:
optimistic not because any rollback might be needed, but because failure could erase the
resulting state. This risk is eliminated by imposing a synchronization barrier prior to responding
to the client, even for read-only requests. The barrier delays the response until any prior updates
have become stable, yielding a model with strong consistency and amnesia freedom. Relative to
today’s first-tier model, the only delay is that associated with the barrier event.

4.3 The Isis2 System
In this section, we offer a brief experimental evaluation of the system, focused on the costs of

our scheme. Our new Isis2 system supports virtually synchronous process groups and includes
reliable multicasts with various ordering options. The Send primitive is per-sender FIFO
ordered. An OrderedSend primitive guarantees total order; we won’t be using it here because

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

we’re assuming that sharded data has a primary copy. The barrier primitive is called Flush; it
waits passively until prior multicasts become stable.

Figure 4. Send, together with a Flush barrier.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

Figure 5. SafeSend (in-memory) Paxos.

Figure 6. Durable (disk-logged) Paxos.

Isis2 also supports a virtually synchronous version of Paxos [14], via a primitive we call
SafeSend. The user can specify the size of the acceptor set; we favor the use of three acceptors,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

but one could certainly select all members in a process group to serve as acceptors, or some other
threshold appropriate to the application. SafeSend offers two forms of durability: in-memory
durability, which we use for soft-state replication in the first-tier, and true on-disk durability.
Here, we only evaluate the in-memory configuration.

In Figures 4-6 are illustrated these protocol options. A:1 and A:2 are two updates sent
from Server A. These runs all use a single-threaded sender. With multiple threads SafeSend
would have a more overlapped pattern of traffic that wouldn’t impact the per-invocation latency
metrics on which our evaluations focuses. Our key insight is that for soft-state replication,
SafeSend is no stronger than that of Send+Flush.

In Figure 4 we see an application that issues a series of Send operations and then invokes
Flush, which causes a delay until all the prior Sends have been acknowledged. In this particular
run, updates A:1 and A:2 arrive out of FIFO order at member C, which delays A:2 until A:1 has
been received; we illustrate this case just to emphasize that FIFO ordering is needed, but
inexpensive to implement. To avoid clutter, Figure 4 omits stability messages that normally
piggyback on outgoing multicasts: they inform the replicas that prior multicasts have become
stable. Thus, some future update, A:3, might also tell the replicas that A:1 and A:2 are stable and
can be garbage-collected.

Figure 5 shows our in-memory Paxos protocol with 2 acceptors (nodes A and B) and one
additional member (node C); all three are learners (all deliver messages to the application layer).
Figure 6 shows this same case, but now with a durable version of the Paxos protocol: pending
requests are now logged to disk rather than being held in memory. Not shown is the logic by
which the log files are later garbage collected; it requires additional rounds of agreement, but
they can be performed offline.

Notice that had we responded to the client in Figure 4 without first invoking the Flush
barrier, even a single failure could cause amnesia; once Flush completes, the client response can
safely be sent. Flush is needed even for a read-only client-request, since a read might observe
data that was recently updated by a multicast that is still unstable. On the other hand, a Flush
would be free unless an unstable multicast is pending. In fact, our experiments consider the
worst-case: a pure-update workload; even so, Flush turns out to be cheap. For a read-intensive
workload, it would be cost even less, since there would often be no unstable multicasts, hence no
work to do.

The experiment we performed focuses on the performance-limiting step in our consistent-
replication scheme. In many papers on data replication, update throughput would be the key
metric. For our work, it is more important to measure the latency to perform remote updates,
relative to the responsiveness goals articulated earlier. The reasons are dual. On the sender side
(e.g. Server A in Figure 4), all costs are local until the call to Flush, and the delay for that call
will be determined by the latency of the earlier asynchronous Send operations. For SafeSend,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

the latency until delivery to the sender and to the other receivers is even more crucial; the sender
cannot do local updates until a sufficient set of acceptors acknowledges the first-phase request.
Thus, the single metric that tells us the most about the responsiveness of our solution is latency
from when updates are sent, to when they are received and the application is able to perform
them. We decided not to introduce membership churn; if we had done so, membership changes
would have brought additional group reconfiguration overheads. Isis2 batches membership
changes, applying many at a time. The protocol normally completes in a few milliseconds,
hence even significant elasticity events can be handled efficiently.

We ran our experiment on 48 nodes, each with twelve Xeon X5650 cores and connected
by Gigabit Ethernet. Experiments with group sizes up to 48 used one member per node; for
larger configurations we ran twelve members per-node. We designed a client to trigger bursts of
work during which five multicasts are initiated (e.g. to update five replicated data objects). Two
cases are considered: for one, the multicasts use Send followed by a Flush; the other uses five
calls to SafeSend, in its in-memory configuration with no flush. Figure 4 reports the latency
between when processing started at the leader and when update delivery occurred, on a per-
update basis. All three of these consistent-replication options scale far better than one might
have expected on the basis of the literature discussed earlier, but the amnesia-free Send
significantly outperforms SafeSend even when configured with just three acceptors.

Figure 7. Mean delivery latency per single invocations.

Send primitive, contrasted with the same metric for SafeSend with three acceptors and SafeSend with acceptors
equal to the size of the group.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

Figure 8. Histogram of delivery jitter.

Variance in latency relative to the mean, for all three protocols in a group size of 192 members.

Figure 9. Cumulative Distribution Function (CDF) of delays.

The CDF’s are associated with the Flush barrier.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

Our experiments looked at replication on two scales. Sharded data is normally replicated
in fairly small groups; we assumed these would have a minimum of 3 and a maximum of 48
members (inset in Figure 7). Then we scaled out more aggressively (placing members on each
core of each physical node) to examine groups with as many as 576 members. We limited
ourselves to evaluating SafeSend in its in-memory configuration (Figure 8), leaving studies of
durable-mode performance (Figure 9) for future investigation; this decision reflects our emphasis
on soft-state services in the first-tier.

For Figure 8 we picked one group size, 192 members, and explored variance of delivery latency
from its mean, as shown in Figure 7. We see that while Send latencies are sharply peaked
around the mean, the protocol does have a tail extending to as much as 100ms but impacting just
a small percentage of multicasts. For SafeSend the latency deviation is both larger and more
common. These observations reflect packet loss: In loss-prone environments (cloud-computing
networks are notoriously prone to overload and packet loss) each protocol stage can drop
messages, which must then be retransmitted. The number of stages explains the degree of
spread: SafeSend latencies spread broadly, reflecting instances that incur zero, one, two or even
three packet drops (see Figure 8). In contrast, Send has just a single phase (Figure 7), and hence
is at risk of at most loss-driven delay. Moreover, Send generates less traffic, and this results in a
lower loss rate at the receivers.

The software releases developed here can be downloaded from
http://www.cs.cornell.edu/ken/isis2/.

4.4 Related Work
There has been debate around CAP and the possible tradeoffs (CA/CP/AP). Our treatment
focuses on CAP as portrayed by Brewer [7] and by those who advocate for BASE [9][10]. Other
relevant analyses include Gray’s classic analysis of ACID scalability [16], Wada’s study of
NoSQL consistency options and costs [17], and Kossman’s [18][19][20] and Abadi’s 6
discussions of this topic. Database research that relaxes consistency to improve scalability
includes the Escrow transaction model [22], PNUTS [23], and Sagas [24]. At the other end of
the spectrum, notable cloud services that scale well and yet offer strong consistency include GFS
[25], BigTable [26] and Zookeeper [27]. Papers focused on performance of Paxos include the
Ring-Paxos protocol [28][29] and the Gaios storage system [30].

Our own work employs a model that unifies Paxos (state-machine replication) with virtual
synchrony [14]; in particular, the discussion of amnesia freedom builds on one in [14]. Other
mechanisms that we’ve exploited in Isis2 include the IPMC allocation scheme from Dr. Multicast
[1], and the tree-structured acknowledgements used in QuickSilver Scalable Multicast [2].

http://www.cs.cornell.edu/ken/isis2/

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

5. CONCLUSIONS
CAP is centered on concerns that the ACID database model and the standard durable form of

Paxos introduce unavoidable delays. Focusing carefully on the consistency and durability needs
of first-tier cloud services, it was shown here that strong consistency and a form of durability we
call amnesia freedom can be achieved with very similar scalability and performance to today’s
first-tier methodologies. Our approach would also be applicable elsewhere in the cloud.

Obviously, not all applications need the strongest guarantees, and perhaps this is the real
insight. Today’s cloud systems are inconsistent by design because this design point works well
for the applications that earn the revenue in today’s cloud. The kinds of applications that need
stronger assurance properties simply haven’t wielded enough market power to shift the balance.
The good news, however, is that if cloud vendors decide to tackle high-assurance cloud
computing, CAP will not represent a fundamental barrier to progress.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

6. REFFERENCES
[1] Vigfusson, Y., Abu-Libdeh, H., Balakrishnan, M., Birman, K., Burgess, R., Li, H., Chockler,

G., and Tock, Y., “Dr. Multicast: Rx for Data Center Communication Scalability,”
Proceedings of the 5th European Conference on Computer Systems (Eurosys ’10), Paris,
France, April 13-16, 2010.

[2] Ostrowski, K., Birman, K. and Dolev, D., “QuickSilver Scalable Multicast (QSM),”
Proceedings of the 7th IEEE International Symposium on Network Computing and
Applications (NCA 2008), Cambridge, MA, July 10-12, 2008.

[3] Freedman, D., Marian, T., Lee, J., Birman, K., Weatherspoon, H., and Xu, C., “Exact
Temporal Characterization of 10 Gbps Optical Wide-area Network,” Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement (IMC 2010), Melbourne,
Australia, November 1-3, 2010 (Early Accept paper honor).

[4] Birman, K., Huang, Q. and Freedman, D., “Overcoming the “D” in CAP: Using Isis2 To
Build Locally Responsive Cloud Services,” Cornell University Technical Report, Ithaca, NY,
April, 2011.

[5] Marian, T., Freedman, D., Birman, K. and Weatherspoon, H., “Empirical Characterization
of Uncongested Optical Lambda Networks and 10GbE Commodity Endpoints,”
Proceedings of the 40th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’10), Chicago, Illinois, June 28-July 1, 2010.

[6] Birman, K., Malkhi, D. and vanRenesse, R., “Virtually Synchronous Methodology for
Dynamic Service Replication,” Microsoft Research Technical Report MSR-2010-151,
November 18, 2010.

[7] Brewer, E., “Towards Robust Distributed Systems,” Keynote Presentation at the 19th
ACM Symposium on Principles of Distributed Computing (PODC ’00), July 19, 2000.

[8] Gilbert, S. and Lynch, N., ‘Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services,” ACM SIGACT News, Vol. 33 (2), pp. 51-59, June, 2002.

[9] Pritchett, D., “BASE: An Acid Alternative,” ACM Queue, Vol. 6 (3), pp. 48-55, May/June,
2008.

[10] Vogels, W., “Eventually Consistent,” ACM Queue, Vol. 6 (6), pp. 14-19, October, 2008.
[11] Lamport, L., “Paxos made simple,” ACM SIGACT News (Distributed Computing Column),

Vol. 32 (4), pp. 51-58, December, 2008.
[12] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., and Vogels, W., “Dynamo: Amazon’s highly available
key-value store,” Proceedings of the 21st ACM SIGOPS Symposium on Operating
Systems Principles (SOSP ’07), Stevenson, WA, October 14-17, 2007.

[13] Birman, K. and Joseph, T., “Exploiting Virtual Synchrony in Distributed Systems,”
Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP ’87),
Austin, TX, November 8-11, 1987.

[14] Birman, K., “A History of the Virtual Synchrony Replication Model,” in Replication:
Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds), LNCS, Vol. 5959,
pp. 91-120, 2010.

http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/DSN10.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/DSN10.pdf

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

[15] Lamport, L., “The part-time parliament,” ACM Transactions on Computer Systems
(TOCS), Vol. 16 (2), pp. 133-169, May, 1998.

[16] Gray, J., Helland, P., O’Neill, P. and Shasha, D., “The dangers of replication and a
solution,” Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’96), Montreal, QC, Canada, pp. 173-182, June 4-6, 1996.

[17] Wada, H., Fekete, A., Zhao, L., Lee, K. and Liu, A., “Data Consistency Properties and the
Trade-offs in Commercial Cloud Storage: the Consumers’ Perspective,” Proceedings of
the 5th Biennial Conference on Innovative Data Systems Research (CIDR ’11), Asilomar,
CA, pp. 135-143, January 9-12, 2011.

[18] Brantner, M., Florescu, D., Graf, D., Kossmann, D. and Kraska, T., ”Building a Database
on S3,” Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’08), Vancouver, BC, Canada, pp. 251-264, June 9-12,
2008.

[19] Kossman, D., “What is new in the cloud?,” Keynote Presentation at the European
Conference on Computer Systems (Eurosys ’11), Salzburg, Austria, April 10-13, 2011.

[20] Kraska, T., Hentschel, M., Alonso, G. and Kossmann, D., “Consistency Rationing in the
Cloud: Pay only when it matters,” Proceedings of the Very Large Data Base Endowment
(VLDB ’09), Lyons, France, August 24-28, 2010.

[21] Abadi, D., “Problems with CAP, and Yahoo’s little known NoSQL system,”
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html .

[22] O’Neil, P.E., “The Escrow transactional method,” ACM Transactions on Database
Systems (TODS), Vol. 11 (4), pp. 405-430, December, 1986.

[23] Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, V,
Puz, N., Weaver, D., and Yerneni, R., “PNUTS: Yahoo!’s Hosted Data Serving Platform,”
Proceedings of the Very Large Data Base Endowment (VLDB ’08), Vol. 1, No. 2, pp. 1277-
1288, Auckland, New Zealand, August 23-28, 2008.

[24] Garcia-Molina, H. and Salem, K., “Sagas,” Proceedings of the 1987 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’87), San Francisco, CA, pp.
249-259, May 27-29, 1987 .

[25] Ghemawat, S., Gobioff, H., and Leung, S-T, “The Google file system,” Proceedings of the
19th ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’03), Bolton
Landing, NY, pp. 29-43, October 19-22, 2003.

[26] Burrows, M., “The Chubby Lock Service for Loosely-Coupled Distributed Systems,”
Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06), Seattle, WA, pp. 335-350, 2006.

[27] Junqueira, F.P., and Reed, B.C., “The life and times of a zookeeper,” Proceedings of the
21st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’09),
Calgary, Canada, p. 4, August 11-13, 2009.

[28] Marandi, P.J., Primi, M., Schiper, N., and Pedone, F., “Ring-Paxos: A High-Throughput
Atomic Broadcast Protocol,” Proceedings of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN ’10), Chicago, IL, pp. 527-536,
June 28-July 1, 2010.

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

[29] Marandi, P., Primi, M., and Pedone, F., “High Performance State-Machine Replication,”
Proceedings of the 41st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’11), Hong Kong, pp. 454-465, June 27-30, 2011.

[30] Bolosky, W.J., Bradshaw, D., Haagens, R.B., Kusters, N.P., and Li, P., “Paxos Replicated
State Machines as the Basis of a High-Performance Data Store,” Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’11),
Boston, MA, pp. 141-154, March 30- April 1, 2011..

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

BIBLIOGRAPHY
Our effort was led by Dr. Ken Birman, the N. Rama Rao Professor of Computer Science.

Birman formulated the concepts of virtual synchrony in the early 1980s, implemented the
original Isis system, and headed the team that used Isis to build a number of critical national-
asset-level deployments. These include the core technology components of the New York Stock
Exchange (the real-time communication architecture that delivers data to overhead displays, the
SEC and to ticker feed companies – about 500 endpoints in all, in a fault-tolerant network of
about 1000 machines), the Swiss Exchange (the entire exchange is fully replicated with a
complete replica at each member bank, about 250 in total – every operation is translated to a
reliable multicast and all bank systems see every quote, every trade, and do so in realtime) the
French Air Traffic Control System (both for fault-tolerance in console clusters and for reliable
communication of aircraft flight plans between airports; currently in use at France’s five major
ATC centers, but soon to expand into many other regions within Europe), the US Naval AEGIS
warship command and communications system, the Microsoft Windows Clustering solution, the
IBM Websphere fault-tolerance technology, the scalability solution employed by Amazon.com
in its largest datacenters and scalable applications, and a tremendous range of lower profile but
equally critical distributed systems and applications. These kinds of successes haven’t come
easily and point to the mixture of theoretical and practical work that we’ve focused upon
(because such problems are unique precisely in their need for rigor but also for real solutions),
and also in a willingness to persevere even when the commercial community has taken some
other path.

Significant AFRL support in this effort also funded Dr. Daniel Freedman as a Post-Doctoral
Research Associate on this work. At the time, Freedman was a serving US Army National
Guard officer, in command of the forward support company for a Pennsylvania Apache
Battalion. Prior to that, he deployed to Iraq as an enlisted airborne infantryman on a 4-man
(later, 6-man) Long Range Surveillance team. Freedman’s academic background is cross-
disciplinary, with a PhD in theoretical condensed-matter physics from Cornell, followed by this
post-doc in computer science. His research interests center on questions of distributed systems
and communication networks, with a particular inter-disciplinary focus that reflects his diverse
past. Freedman has recently accepted a position as a new faculty member in the Faculty of
Electrical Engineering at the Technion — Israel Institute of Technology.

Dr. Robbert van Renesse, a Principal Research Scientist in Cornell’s Department of
Computer Science, was also supported in this effort. Van Renesse leads research on a range of
distributed systems topics, but with particular passon for their fault tolerance and scalability
aspects: Van Renesse was the principal developer of the Amoeba Distributed Operating System,
commercialized by A.C.E. and used among others by the European Space Agency for monitoring
experiments. At Bell Labs he helped develop the Plan 9 Operating System, now used in various
commercial products as an embedded operating system and still a popular operating system for

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

research. Van Renesse was the principal designer and developer of the Horus Group
Communication System and the principal designer of the Ensemble Group Communication
System on which the group communication system of the popular IBM WebSphere product is
based. Van Renesse was the principal designer and developer of the Astrolabe peer-to-peer
system that was deployed on a multi-continental platform at Amazon.com and connected tens of
thousands of servers. At Microsoft and EMC he has helped with the design of cluster services,
search engines, and other large scale distributed services.

Further support was directed to Dr. Hakim Weatherspoon, an Assistant Professor of
Computer Science, who received his PhD in Computer Science from the University of
California, Berkeley. His interests include various aspects of information systems, distributed
systems, network systems, and peer-to-peer systems with focus on fault-tolerance, reliability,
security, and performance of Internet-scale systems, with decentralized — autonomous,
federated, multi-organizational, and cooperative — control. This effort also provided limited
support for Weatherspoon’s post-doc, Dr. Tudor Marian. Marian received his PhD in computer
science at Cornell in 2010, with research interests that span the areas of networking, distributed
systems, and operating systems. Within these areas, he focuses upon performance, fault-
tolerance, and reliability issues that arise within the modern datacenter, with a strong preference
for constructing deployed solutions based on solid engineering. Marian is now an engineer at
Google, working on their core infrastructure. Finally, additional support funded the graduate
research activities of Ryan Peterson, whose interests center upon peer-assisted content
distribution, which couples upload bandwidth at peers with a logically centralized coordinator
that steers peers toward an efficient allocation of resources. Peterson has also, since, joined
Google.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ACID Atomicity Consistency Isolation Durability
ACM Association of Computing Machinery
AFRL Air Force Research Laboratories
BASE Basically Available replicated Soft state with Eventual consistency
BSD Berkeley Standard Distribution
C2 Command and Control
CAP Consistency Availability Partition-tolerance
CPU Central-Processing Unit
DHT Distributed Hash Table
DoD Department of Defense
ESB Enterprise Service Bus
FAA Federal Aviation Authority
FIFO First-In, First-Out
HPC High-Performance Computing
IP / IPv4 Internet Protocol (version 4.0)
IPMC Internet Protocol MultiCast
LAN Local Area Network
MCMD Dr. Multicast
MPI Message-Passing Interface
.NET [Non-acronym term for Windows’ managed execution environment]
NSF National Science Foundation
PVM Parallel Virtual Machines
QSM Quicksilver Scalable Multicast
O/S Operating System
SEC Securities and Exchange Commission
TCP Transmission Control Protocol
UDP User Datagram Protocol
WAN Wide Area Network

	List of Figures
	1. SUMMARY
	2. INTRODUCTION
	2.1 Serious Obstacles in Existing Solutions
	2.2 Prior Work
	2.3 Application to Military Needs

	3. METHODS, ASSUMPTIONS AND PROCEDURES
	4. RESULTS AND DISCUSSION
	4.1 Life in the First-Tier
	4.2 Consistency: A Multi-Dimensional Property
	4.2.1 Membership.
	4.2.2 Update Ordering.
	4.2.3 Durability.
	4.2.4 Failure Model.
	4.2.5 Putting It All Together.

	4.3 The Isis2 System
	4.4 Related Work

	5. CONCLUSIONS
	6. REFFERENCES
	BIBLIOGRAPHY
	List of Symbols, Abbreviations, and Acronyms

